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Vertex functions, spectral weights, and anisotropy in phonon-assisted
multimagnon optical absorption
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We discuss the general vertex function coupling light with phonon-assisted multimagnon excitations in
perovskitelike antiferromagnets. We make a symmetry analysis and use exact diagonalization of a multiband
Peierls-Hubbard Hamiltonian in a small cluster to propose a simple parametrization of the vertex. The param-
eters obtained determine the strength of the spectral weight, the optical anisotropy, and the momentum depen-
dence of the vertex. The nonperturbative results are compared with perturbation theories in the hybridization.
We find that although the momentum dependence of the vertex is similar to the one obtained in perturbation
the absolute values renormalize strongly and the anisotropy in lamellar compounds changes in two orders of
magnitude. This explains the success of the perturbative computation in getting the correct line shape for
phonon-assisted multimagnon absorpfidnLorenzana and G. A. Sawatzky, Phys. Rev. [ &4£.1867(1995 ]
but the poor results for the strength of the optical anisotropy. Our calculated values of the anisotropy are in
good agreement with experimenf§0163-18208)04236-7

[. INTRODUCTION of the vertex is quite similar to the one obtained with PTH.

This explains the success of PTH to describelitne shapes
Antiferromagnetic insulators show optical absorptionand put those theoretical results on firmer grounds.

bands related to spin excitations inside the insulating'gdp. ~ We also study the effect of the direct exchange between

Recently, a detailed theory was presented that explaine’dﬂe metal and the ligand in perovskitelike materials that is

these bands in terms of phonon-assisted absorption of multhecessary to describe correctighe magnetic coupling be-

magnon excitation&:® tween metals. We find that for some parameters the momen-

These absorption bands reveal precious information abodtm dependence of the vertex changes qualitatively giving

the dynamical response of the antiferromagnet that is diffi2cCess to different regions in momentum space.
The paper is organized as follow. In Sec. Il we make a

cult or impossible to obtain by other means like Raman orb iof outl f the th d di h i £ th
neutron scatteringn order to extract this information from ret outline ot the theory and diSCuss theé symmetries of the
vertex. Then we compare the results obtained for the anisot-

tphheor?c))(r? ?/rér::)?tfur? ctﬁ)cr)icilgi ggggjlfadge of the I|ght—magnonfopy irj PTH(Sec. Ill) vs the nonpertgrbative approac®ec.
Previous studiés® have used perturbation theory in the V). Finally we present our conclusioriSec. V.
hybridization (PTH) to derive an effective Hamiltonian for
the coupling of light with these excitations. However, real
materials are far from being in the perturbative regifhe.
Despite that, computations using PSBTI; give an excellent ac-
count of the experimental linghapes™ . '
On the otherphand, a striking F;eature of the experimental Here we present a brief account of the theory to fix the

data in layered materials is the very strong optical anisotrop Tq(?liilg(t)i? Fg; geta:lnseiseeinl?f/f'z 7552%3'@%'3’ ll\]’)\ij et ;?r:z"r;;) an
of these absorption bands. For example, in materials wit g P P ' P

CuO, layers almost all the spectral weight appears when thgrguments apply to other antiferromagnets with larger spin

A . . ; or different dimensionality.
.e'ec”'c _f|eld is oriented in the C@Ianes(seg Fig. 1 This The theory starts from a multiband Peierls-Hubbard
is puzzling for the theory because no selection rule precludeﬁ o . -
. ) amiltonian in the presence of an electrical fi&d

to have an absorption perpendicular to the plane. In fact,
PTH strongly underestimate the optical anisotropy.

In this work we present a nonperturbative method to com-
pute the vertex functions based on exact diagonalization ofa H= 2 t;i ({u })CT C: +2 e ({ug E)c-T C:

. . . . | ] k ioc“jo ' 4 i kS iovio

multiband Peierls-Hubbard Hamiltonian on a small cluster. i#],0 o
We find that the overall scale of the vertex function deter-

II. MULTIMAGNON INFRARED ABSORPTION
A. Model

mining the spectral weight gets strongly renormalized in co-
valent systems like the cuprates. This can change the optical
anisotropy in as much as two orders of magnitude respect to
the PTH result. This is in good agreement with the very
strong anisotropy observed.

In addition, the general symmetry properties of the vertex
are discussed. This allows us to propose a simple parametri-
zation of the vertex. We find that the momentum dependence
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W T T T ' the direction of a Cu-O bond and thzeaxis perpendicular to
2ol the Cu-O plane. With this conventioa,B=x,y in two-
dimensional systems. For systems with 1D Cu-O chains we
= o will take x as the chain direction.
= We will take the following reference parameter sets ap-
2% propiated for Cu-O plane&ll energy values in ef'*3and
o 1 .
2 o} chains:
o Up:5; Ud:8; Upd:]-
0 Il 1 1 I L 1 L
0.0 0.2 04 0.6 0.8 10 12 14 0 _ . 0 _
t,,=0.5; t4=1.2
Photon Energy {eV] pp pd
FIG. 1. Measured absorption with the electric field parditel 7 tgd Upd tgp
and perpendiculafm) to the CuQ plane for LgCuQ, as a function a=5 a—; B= 2a—; y=v2 a
of the photon energyRef. 2. A linear background must be sub- pd pd pd
tracted from the experimental data that almost agree withzthe
absorption. apg=3.6 a.u.
. . _0_ 0 :
where thec!  operator creates a hole at orbitalve consider To study the effect of covalench=E,—E; is taken
Cud,z_,2 and Op,,, orbitals. variable in the range 0-10. Fdt,4 we took two values:

For the on-site matrix elements we take=Eq;(E,;)  Kpa=0 andKpg=—0.22.
and U;=Ugy(Up) for i in a Cu(O) site. For the intersite
Coulomb matrix elements we také;j=U,q4 (direc) and B. Effective Hamiltonian and optical conductivity
Kij=Kpq (exchanggif i andj are Cu and O nearest neigh-
bors, and zero otherwis& 4, the exchange integral be-
tween Cu and @Ref. 11 was not included in Ref. 7 and it
is necessary to get the correct value of the superexchange for
fche accepted values of the other paramét‘ét§.|s the hop- H :2 Ji.o{Uk gH E)B; o+ Hpn—E-Pyp. ®)
ing between nearest neighbors,{;; , between Cu and O; ia
top,ij between two oxygens B _ .

M, is the mass of the atomp, is their momentumy, is  1€€Bi.«=S(R)(R;+&,) whereR; +e, is the position of

. o o — . the Cu nearest neighbor of sité in « direction.

the displacement from the equilibrium positiBn, andk,, is : . .
a spring constant tensdP,,, is the phonon dipole moment Ji.al{uk g}, E) is a generalized superexchange depending on

pring co ph P pole : " the phonons and electric field. It will be computed in the
For simplicity we only allow the O to move. With this ap-

oo o . o following sections by two different methods.
grﬁgzzitlg)anh—eZZkuk, andZ is the ionic charge of the Ji.« can be expanded as a Taylor serie€imnd {uy z}.

The on-site energies and the hoppings are modified Witr|1:Or a given Cu-Cu bond like the one in Fig. 2 this reads

the movement of the atortfsand with the electric field ac-

At low energies all physical properties are given by a
Heisenberg-like Hamiltonian for the layer:

: dJ dJ;
cording to: J =Jn+ ey Le u
ha 0 Ev JE? J%ﬂ &uﬁﬁ uluB
(R«—Ry)
t u )=t +(+)a ——u NI
pd,kl({ k}) pd () |Rk_RI| k n 2 _ i , EVU]-U“B'F @)
ji.Bumv JE uj g '
(R«—Ry) . )
tpp({UD) =th o+ () y m(uk—u,) Jo is the usual superexchang#l; ,/JE” is zero because of

symmetry. This means that there is not direct absorption of
magnongSee Ref. J.
Ed,i({uk}’E):EgJ"BE/ (F)Ut+eE- (R +Uy) The Lst order_ derivatives im[Eq. (4)]_ giyes the magnon-
K phonon interaction. Second order derivativesiirenormal-
ize the spring constantk or give higher order magnon-
Epi({ud,E)=Ep+eE- (Ri+u). (2 phonon interactions. All of these terms are discussed in Ref.
7 and will not be discussed here.

For the hOpp'.ngt(PP'k' 'tpd:k') the sign 1n parenthesis is such The second-order cross-derivatives Enand u are the

that the matrix element increases if the atoms came clos

With the on-site energ¥y; (or Ep ;) the opposite is true.

The prime in the sum ik indicates nearest neighbors.
From now on we will reserve latin indexj,k to label Cu

sites, greek index, to label the Cu-Cu bonds and also the

O’s that site on those bonds, and greek indexgsto label

the Cartesian components of the vectors. In two-dimensional q-4(Ri 0

(2D) systems we take a coordinate system withxttexis in '

the magnon and phonons and are the ones that we analyze in
detail in this work.
We define

PJ; o

R ;)= ——2, 5
i.6) JE"out 5 ®
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-0 a (R+ . to be independent of momentum and phonon polarization
A" (@x(4+) ) T T 4y (@R +Y) ) and defined the light-magnon-phonon vertex as

a4, (2a,R) o ) 9. (2a,R) N2
— 2 _ v v
O v Qe oo™ g7 25 BRI P (12

~
G (0) )

T T _quy (apd(Q'*'y) ) _ 47782
¥ oo=" T - (13

qu (apd(Q-'-y) ) ? MVCUwO

(a) V¢, is the volume per Cu atom.
Y, 9.”(0)3 4 a.0)g ) We define the optical anisotropyas

©*0=0 QOEQ Jo¥ (w)dw
L , O 40 a , O — T ORe 14
X = ET /e [o{w)de (14

(b) (c)

C. Symmetry considerations and parametrization of the vertex

FIG. 2. (a), (b), and(c) Different charges when the electric field Here we discuss the general symmetry of the vertex. This

is in the x,y,z directions, respectively. Only the non-negligibly will Qrea“y simplify the c_omputations_ be_IOW' .
charges are shown. In the case of the electric field irttieection Since the vertex is given by derivatives 8f andJ is

we also show the sign of the charges. The thicker arrows represefSSociated with a Cu-Cu bond the relevant symmetry group
the Cu holes. R and L identify the right and left Cu. is the one that leaves the lattice invariant respect to point

group operations centerdéu the bond(i.e., an O sitg In our
case this iD,,,.

In Eqg. (5) E and u transform as vectors so the second
order derivatives transforms as the product of their transfor-
mations. It is easy to check that the vertex transform like
ireducible representations oD,,."> With this o}

_ =92J/JE*gu* transforms as theA, (x?) representation,
Bi.=2> €RiBy,. 6)  q%=35%d/0E* W as Byg (Xy), Q2 2 2319 au? h
T L @ B - Byg y),qaﬁ_ Il dE*du as t e
B,y (X2) representation, etc. This fixes all the relative signs
of the charges as displayed in Fig. 2.
uiﬂﬁzz eik'RiU"k"B_ (7) Apart from being related by symmetry, for reasonable pa-
' k ' rameters the charges decreased quickly with the distance be-
tween the bond and the O that moVéR; ,—R; g in Eq.
v _ iK-(Ri—R:) v (5)]. This allows us to describe all the non-negligible and
gﬁ(R"“_Rj'ﬁ)_; el J)qgﬁ(k)' ®) nonsymmetrically related charges with only four parameters:

da5(Ri,«—R;, g) has units of charge so we call it an effective
charge for the coupling of light with magnon-phonon excita-
tions.

We introduce the Fourier transforms:

The dipole moment can be computedRs —VgH. Us- Uan(0)=0q,
ing Egs.(3)—(8) one gets 55 .
qaa(o):ql

P=P1pnht Popnt Piphtmagt - - - - ©)

P1pnh andP,,;, are the dipole moment related to the absorp- Uaa(0)=0az
tion of one and two phonons, respectively, and will not be » -
considered herésee Ref. J. P1pp4 mag IS associated with the Uaa(28p0X) = —da

absorption of magnons assisted by a one-phonon process: o
abglapa(X+y)1=—da, (15)

Plonimag= —N2 2 GEA(P)B_p.Ubs. (100 where @# 8. The last relation holds only approximately.
P With our parameters the difference is less than 10%.
In the next sections we will compute these parameters
with two different methods.
With this parametrization the vertex functiofisq. (12)]
for a Cu-O plane takes the form

Onceq,4(p) is known we can compute the optical con-
ductivity. From the dipole-dipole correlation function we get
for v polarization’

o' (w)=woy 2 q;a,'ayylm«B“;Bf’p»(w—wo)_ qg,a,a,a:q,iz_4QA2QAC05(pa)
p,a’,a
11 .
D +4q2coS(p,,) + 16q2sir? p_) sinz(%)
Here we use Zubarev's notatidnfor the Green’s function 2 2

(((Bg; Bi"p)>), wy is the phonon frequency that we assumed (16)
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17

(18

2 _ 2
Qp,a/,a/,ﬁ_ qr

2 _ 2
qp,a,a,z_ql .

Here a# B. The rest of theqf) are zero or negligible. For a
Cu-O chain in thex direction like the ones in $CuG; the
vertex takes the form

qg,x,x,f q,?xz_ 40a204C08 py)

+404c08(py) (19)
qs,x,x,y:ch2 (20)
qs,x,x,zz QI2 (21)

and as previously, the rest of thé, are zero or negligible.

Ill. PERTURBATIVE COMPUTATION
OF THE EFFECTIVE CHARGES
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2 2
tL tR

J?@=2K +
"\ az- Kpa AR—Kpg

(23

With these expressions one can compute all the deriva-
tives in Eq.(4). This gives access to the magnon-phonon
interaction, effective charges, and all other possible coupling
between magnons, phonons, and light.

Making a power expansion wheyg, t,q, Sayq, and
@apy are much smaller thad,, Uy, andU, we get the
following parameters:

t 2 t2
_gePd 2|, geopd
q,—8eAZ +6(2) +8eA3K

2(1+2>+1(1+2)2
A3\Ug €] Ugldg Ug
t3g

+ Z%Fﬁadepd

pd

1(1 2
80\Ug " e

td,
qa= Seﬁﬂapd

J can be computed for a general configuration of the oxy-

gens and the electric field using perturbation at the 4th order

in the hoppingt,y (Ref. 10 as the splitting between the

singlet and the triplet state. For simplicity we will consider
the Cy0O; cluster shown in Fig 2. This is an exact 4th order

computation wherK .4, t,,=0 and a very good approxima-
tion otherwise. In the former case we get

1 2

_—t —

1
@)= 94242
IW=2i| | 3 5

€

L2 1 L2 1
AZ Ugt(AL—ARr)  AZUg—(AL—AR) |’

(22
where we defined

AL=(A+Upg) —eayxE—eug,E+NBY (£)uf,
Kk, o ’
Ar=(A+Upq) +eayXE—eug,E—NBY, (£)uf,
k,a ’

e=(2A+U,)—2eug,E+NBY, (£)uf,
k,a '

tREtpd+ auoyx

tLEtpd_ auo)( .

The sum ink is over nearest neighbors aagg is the dis-
tance between Cu and O.

As noted by other authorsit is important to include in
the HamiltonianK 4 to get a correct estimate df For ex-
ample, forK,q=—0.22 andA=2.7 eV we get, using exact
diagonalization{see next section),=0.13 eV which is the
accepted value of the superexchange foyQLe0,. Although

Op2=—20a+ 0, +dc
ar=aq,
where we defined

Eo:2A+Up

AO:A+Upd

tha
Qc=— 1@F aadepd .

We see that only 3 parameters are independent and when
Kpa=0 only 2.

In Fig. 3 we show the charges as a functionfXofThe
mechanism giving rise tg, and g, in the absence oK 4
were discussed in Ref. T, is due to the process in which
the charge of the O that moves depends on the surrounding
spin configuration. We call it a local charge. On the other
hand,q, is related to a process in which the displacement of
an O produces a spin depend flow of charge between cop-
pers, reminiscent of the charge-phonon efféatve call it a
nonlocal charge.

Due to the fact thaK,q appears at lower order in the
perturbations theory it gives a strong contribution to the ef-
fective charges, and the contributiap. appears. This last
charge can be understood in the following way: When the
central O moves in the bond directibnandtg, andA, and
Agin Eq. (23) get out of balance producing a spin dependent
flow of charge, i.e.g¢ is a nonlocal charge.

IV. NONPERTURBATIVE COMPUTATION OF THE
EFFECTIVE CHARGES AND SPECTRAL WEIGHTS

To obtain nonperturbative values fgf ;(R;) we compute
exactlyJ using a Lanczos exact diagonalization techntque
taking the full Peierls-Hubbard HamiltoniahEg. (1)].

Kpa is relatively small it has a strong effect because it enterd({uy,},E) is obtained as the splitting between the singlet

in second ordef as

ground state and the first excited triplet state in a@u
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process that becomes important in covalent systems and is
not taken into account in perturbations at the considered or-
der is the jump of one hole from one Cu to the O’s surround-
ing the other and forming a Zhang-Rice singlet in the final
state!® Clearly, this kind of process is of a larger order in
perturbation than the one considered above. We believe that
this process makeg, dominate over the other charges for
covalent materials.

From the above results we conclude that the vertex
strongly simplify in a planar covalent material as

08

e
>
T

Charges [e]
=3
ES
T

02|

00k

0 ' o(Pa) (P8 [ Pa
AleV] U3 00,0 = 1603 SIP 7)sm2 ?) +sirt > @
FIG. 3. Perturbative chargeg, (dotted line$, q, (dashed lines
andqc (full line) as a function ofA for the parameters of Sec. Il. 2 _ 2 (25)
The thick lines correspond t&,4=—0.22 and the thin lines to Yp.c.ap= A1
Kpg=0. In this last casec=0 (not shown. ) )
qp,a,a,Z:ql . (26)

cluster for a general configuration fi;,} andE. Then the 2 -

derivatives in Eq(4) are obtained numerically. For the ma- L:]e:e’azﬁt' Th? restthof tht% art?] zefrct)hor neglllglble.t\)Ne Sf.e
trix element values given in Sec. Il all 4 parameters in Eq. atqa determines the strength ol he in-pian€ absorption,
(15) are needed. whereaqy, determines the out-of-plane absorption.

In Fig. 4 we show the charges obtained with exact diago- Equation(24) is the same expression proposed on Refs. 6

nalization and perturbations. As expected for the digoth a}nd 7 on heuristic arguments _and which we put here on
computations convergésee inset However, this conver- firmer grounds. We see that the in-plane vertex filters out the

gence is extremely slow, much slower than for the superexp:é) respor:se. i CuO chai _
change(see Ref. 10 This makes perturbation theory a very O covalent systems with Cu-O chains we get:
poor approximation to determine the charges.

We see that the charggs, g}, andqc are overestimated 2 _ 16qzsin4(&) 27)
in perturbations whileg, is underestimated. Notice that in XXX A 2/
PTH g, and g, are of the same order whereas in the exact
computation they differ strongly. This has dramatic conse- 2 —n2
qp,x,x,y QI ’ (28)

guences for the optical anisotropy as we show below. Also
dc, which in perturbation is entirely due 0,4, is strongly ) )
overestimated in that approach. Apxx,z= i (29)

For g, this can be understood on the basis that thisisa _ ) o
dynamical process where, associated with the displacemefflis is the form used in Ref. 8 to describe the absorption in
of the O's, there is a flux of charge from one Cu to the other SRCUO:. . . .

There are processes beyond fourth order perturbation theory A quick estimate of the spectral weights in the 2D case

that are very important for this charge. For example, ond'eglecting quantum fluctuations in the ground statee the
AppendiX¥ shows that the anisotropy goes like this:

12— 2
| | , | o~5| | (30)
1o 1 ai
4 : . : .
08F iy 8 From this quadratic dependence and from the previous re-
) sults for the charges we can see that PTH will give a very
g 06F - . poor result for the optical anisotropy.
g BN ; In Fig. 5 we see the optical anisotropy computed by di-
© o04r , ; 1 agonalizing exactly the Heisemberg model on>a4lattice.
(o RN We have exactly evaluatédBy ;BY.))) in Eq.(11) and com-
0.2 -qC { = o T puted the optical anisotropy both with the exact charges and
o the perturbative ones. We see that the exact estimate differs
00—, 6 o from the perturbative one in two order of magnitudes. This
AleV] explains the strong anisotropy seen in the experiments and
FIG. 4. Chargesj, (dotted lines, g, (dashed linels andqc (full that g:annot be_ explained in a perturbatlvg cpmputatl_on.
line) as a function ofA for the parameters of Sec. Il arkyq It is interesting to remark that for very ionic materialg

= —0.22. The thick curves correspond to the exact computation andominates. In this limit the in-plane vertex becomes momen-

the thin ones to the perturbative result. The insets show an expaftum independentqﬁ,a,aﬂ:qé) giving access to the whole
sion of the largeA region. momentum space.
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] is in good accord with the one used in Refs. 6—8. This ex-
700 . . .

] ' plains the success of these works to describe the first peak of
the two magnon-phonon assisted excitations in the planar
compound LaCuQ,®’ and the whole spectrum in the 1D
] compound SICu0,.®
400 \ Exact Charges Additionally, we discussed the symmetry of the vertex.
~ This fixes the way the vertex transforms under the different

N symmetry operation and should serve as a guide to find
200_' simple parametrizations or to get a semiphenomenological
h one when it is difficult or impossible to get the charges.

We generalized the theory for a more realistic Hamil-
0 e ———— ' _ ' tonian than the one considered previousigecluding the di-

0 2 4 6 8 10 rect Cu-O exchange. We find a contribution to the vertex that
AleV] dominates for very ionic materials and that makes the vertex

, . , _ practically momentum-independent, giving access to the
FIG. 5. Optical anisotropy as a function af calculated with whole Brillouin zone.

Kpa=—0.22 and the parameters of Sec. Il. We used the perturba-
tive charges and the exact ones.

(o2}

(=]

o
!

500

300 +

Anisotropy ©

1 Perturbative Charges .
1004 B it

APPENDIX: ISING ESTIMATES OF SPECTRAL WEIGHT

V. CONCLUSIONS Here we present a quick estimate of the spectral weights

We have shown that PTH is a very poor approximation towhen the quantum fluctuations of the ground state are ne-
compute the strength of phonon-assisted multimagnon atglected. This provides us with simple expressions for the
sorption bands in covalent materials. We introduced a nonsPectral weights.
perturbative method based on exact diagonalization of a We neglect thexy part of the operators in the Hamiltonian
small cluster. With the latter we find that the overall strengthbut keep it in the dipole moment opera®{Eg. (10)]. Since
gets strongly renormalized respect to the former method dehe ground state is now the classical Neel state and there are
pending on the electric field polarization. For electric fieldsnot quantum fluctuations, it is trivial to compute the dynami-
in the plane we find a much larger strength, whereas fofal correlation function of Eq(11),
electric fields perpendicular to the plane we find a much L
lower spectral weight. As a result we find an enormous op- o. ©
tical anir;,otropy the?[ is in accord with the experimental resuth Im{(B ’Ble))NgeI: Z‘s(“’_&]_ o), (A1)

(Fig. 1.
On the contrary, the momentum dependence of the verteand to get an analytical expression for the anisotropy.
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